

Integration of CryoLand snow data into hydrological modelling

David Gustafsson, Lena Strömbäck

Swedish Meteorological and Hydrological Institute SMHI (david.gustafsson@smhi.se)

Thomas Nagler (ENVEO), Sari Metsämäki (SYKE), Kari Luojus (FMI), **Rune Solberg (NR), Eirik Malnes (NORUT)**

Introduction

EU FP7 CryoLand 2011-2015

- Products and Services for satellite based Snow and Land Ice data
- Fully operational demonstration service with Pan-European data is available at <u>www.cryoland.eu</u>
- Interactive web-portal or automatic download from WMS server

Integration of CryoLand data in hydrological modelling

- Tools for integration of CryoLand snow products in hydrological models
- Download, pre-processing, assimilation

Hydrological modelling

 Evaluate impact on stream flow simulations of assimilating satellite snow data

Data integration in hydrological models

Functionalities:

- Automatic download of CryoLand data for a particular area and time of interest.
- Transformation of raster data into time-series for hydrological drainage basins.
- Assimilation of snow data in hydrological model for comparison and/or model state updating.

Developed tools:

- Scripts for automated download and transformation of raster -> basin averages.
- Data assimilation module in the open source HYPE model.

Case-study: Sweden

Hydrological model S-HYPE

Swedish operational application of HYPE model

CryoLand satellite snow products used in the study:

- Pan-European Snow Water Equivalent (SWE) FMI
 - Satellite-based microwave radiometer data (DMSP SSM/I) and weather station snow depth data
 - Pixel size 0.1°x 0.1° (~10x10km²)

Pan-European Fractional Snow Cover (FSC) – ENVEO/SYKE

- Optical satellite data (MODIS/Terra)
- Pixel size 0.005°x0.005° (~500x500m²)

Scandinavian Multi-temporal/sensor FSC products - NR/NORUT

- Multi-temporal (latest cloud-free information last 7 days)
- MODIS/Terra (250x250m²)

- Daily data 2011-2013
- Pan-European area:
 72°N / 11°W to 35°N / 50°E.

Hydrological Predictions for the Environment Model

Lindström et al., 2010, *Hydrol. Res 41.3-4:295-319.* Strömqvist et al, 2012.

HYPE Open Source Community!

http://hypeweb.smhi.se

S-HYPE

- 450 000 km²
- 38 000 sub-basins
- Mean sub-basin size: 11 km²
- Input data
 - Land and soil characteristics
 - Elevation
 - Sub-basin and Lake delineation
 - Interpolated P and T station data
- Step-wise calibration
 - General, Soil, Landuse, Regional parameters
 - Discharge observations (~300 stations)

Two options for snow data integration:

1) Evaluation of model and data agreement (visual or numerical)

Correlation, mean, standard deviation, spatial patterns

2) Data Assimilation for model state-updating using Ensemble Kalman filter

$$X^{a} = X^{p} + K\left(Y - HX^{p}\right) \qquad \qquad K = \frac{C_{XY}}{C_{yy} + R}$$

Model states are updated as a function of co-variance between the model states and the discrepancy between model prediction and observed data (aka 'innovation')

Important that model and data do not disagree too much!

Model and data comparison – SWE Pan-European SWE product (FMI)

- Good agreement in central part of middle and northern Sweden:
 - Forests
 - Non-mountain areas
- Correlation is high (except for the south)
- Variability and Mean value differs:
 - In the south (little snow and lakes)
 - along the east coast
 - western mountain range
- Problem for the satellite or model?
 - Mountains, surface water, coastal areas, areas with small amount of snow

Model and data comparison – FSC

Pan-European optical product ENVEO/SYKE

- In general a very good agreement between model and satellite data throughout Sweden
- However, the temporal variability is different in the most alpine part of the mountains in northern Sweden
- Transmissivity model is welladapted to boreal forests.

Model and data comparison – FSC

Multi-temporal/multi-sensor Scandinavian product (NR/NORUT)

- Best agreement in the mountain area!s
- Satellite product originally developed for Norwegian mountain areas
- Better temporal coverage less cloud masking
- Not intended for forested areas
- Correlation still high in forest
 - Potential to improve for forest areas?

Intermediate discussion

- Good agreement between Pan-European optical FSC product and S-HYPE in most parts of Sweden.
- Multi-temporal FSC product had a better agreement in mountain areas
- Pan-European SWE product and the model agreed rather well in central-northern Sweden – disagreements in the mountains and along the coast.

- How will the quality of river discharge simulations change if we assimilate the satellite snow data in the simulations?
- Can the satellite information help explaining inter-annual variations better even if mean value is wrong?

Assimilation experiment

- 9 non-regulated basins with discharge observations
- Rather small (~1000 km²)
- Distributed on "good" and "bad" areas according to previous comparison
- 5 types of simulations:
 - 1) Deterministic (single simulation)
 - 2) Ensemble without assimilation
 - 100 ensemble members
 - Random perturbation on P and T
 - 3-5) EnKF assimilation with
 - 3) SWE
 - 4) FSC (optical)
 - 5) FSCM (multi-temporal optical)

Test-basins represent: 10-85% forest cover 40-950 m.a.s.l (mean) 7-1100 km²

Good exmple: Abiskojokki, northern Sweden. Both SWE and FSC data improve stream flow simulations

Bad exmple: Vattholma, south-east Sweden.

FSC data improve stream flow simulations

SWE data deteriorate the stream flow simulations (amount and melt problem)

Impact on river discharge simulations

- Overall, rather small changes small improvements just by ensemble-mean
- SWE-assimilation reduced the model performance in 7 and improved in 2 cases
- FSC-assimilation improved model performance in 5 cases

Simulation	KGE	А	в	С	D	E	F	G	н	I	Improved/reduced performance (sum)	
Deterministi	Q	0.44	0.84	0.55	0.67	0.41	0.82	0.82	0.88	0.57	reference	
С												
Ensemble	Q	0.47	0.86	0.53	0.64	0.44	0.85	0.82	0.90	0.56	5 improved, 3 reduced (+	
EnKF_SWE	Q	0.83	0.80	0.19	0.34	0.55	0.49	0.81	0.53	0.56	2 improved, 7 reduced (-5)	
EnKF_FSC	Q	0.61	0.85	0.56	0.72	-0.04	0.64	0.82	0.88	0.62	5 improved, 2 reduced (+3)	
EnKF_FSCM	Q	0.41	0.68	0.55	0.54	0.47	0.64	0.58	0.80	0.54	1 improved, 7 reduced (-6)	

Known issues with SWE microwave data

Saturation at ~150-200mm Fixed snow density Spatial swe distribution

Potential ways forward:

Estimation of the (microwave) effective SWE using the spatial variation in the hydrological model and assuming a certain saturation level.

Summary

- Tools were developed for integration of CryoLand data in hydrological model and are available to interested users.
- Comparison between CryoLand Satellite Snow products and S-HYPE model simulations in Sweden using the KGE-index was useful to identify the spatiotemporal properties of the data and the model
- CryoLand Satellite snow data seem to provide useful information to improve river discharge simulations in Sweden (both FSC and SWE)
- **SWE data** would be the most valuable, but also the most uncertain.
- However, it seem to be possible to relate systematic biases in microwave SWE data to snow spatial distribution and snow structure simulated by a model or in-situ data.
- SMHI will continue testing CryoLand data operationally during 2014-2015.

Thanks for your attention!

What's the fractional snow cover here?

Possible to relate model-data-biases to basin characteristics?

Gustafsson et al., EGU 2014-16020, HS2.2.2

Forest cover

69°N

66°N

63°N

60°N

57°N

8°E

CC (sim.obs)

Test basins:

River basin	Stream flow Station/Code	Code	Lat	Lon	Area (km²)	Elev, mean (m)	Elev, std (m)	Forest (%)	Lake (%)	Description
Tornionjoki	Övre Abiskojokk	А	68.3	18.5	565.1	953.4	261.2	9.9	2.6	North, mountain, alpine
Tornionjoki	Mertajärvi	В	68.3	22.1	390.8	419.4	46.3	47.9	5.2	North, inland forest
Umeälven	Tängvattnet	С	65.9	14.7	194.6	718.1	167.0	18.5	9.0	North-west, mountains
Indalsälven	Medstugan nedre	D	63.6	12.3	224.7	654.7	83.5	24.2	10.6	Central-west, lake area
Ljusnan	Ryggesbo	E	61.6	15.7	148.9	303.3	71.6	83.4	6.5	Central, inland forest
Testeboån	Konstedalsströmmen	F	61.0	16.4	997.8	255.7	95.6	82.3	5.4	Central-east, coastal forest
Dalälven	Ersbo	G	61.4	12.7	1103.2	732.0	171.8	51.9	0.3	Central-west, mountain, forest
Norrström	Vattholma	Н	60.2	17.8	293.7	38.6	10.4	74.3	3.1	South-east, coastal forest
Söderköpings ån	Ryttarbacken	I	58.5	16.0	7.3	61.8	9.6	35.2	0.0	South-east, agricultural