Scandinavian Snow Products

Rune Solberg (NR) and Eirik Malnes (Norut) Hans Eilif Larsen (KSAT) Øivind Due Trier (NR) Heidi Hindberg (Norut)

"Scandinavian snow product and service development concept"

Scandinavian snow products

Variable	Developed by	Provider	Resolution	Sensor type	Status
FSC	NR & Norut	KSAT	0.0025° × 0.0025°	Multi-sensor/temporal [Sentinel-1+3]	Operational (MODIS or VIIRS & RS-2)
SCAW	Norut	KSAT	0.0005° × 0.0005°	SAR [Sentinel-1]	Operational (Radarsat-2)
SSW	NR	NR	0.01° × 0.01°	Optical [Sentinel-3]	Pre-operational (MODIS or VIIRS)
SST	NR	NR	0.01° × 0.01°	Optical [Sentinel-3]	Pre-operational (MODIS or VIIRS)

Pre-operational snow surface temperature

- Thematic information:
 - Skin surface temperature for fully snowcovered surfaces
- Pre-operational service provision:
 - Tested by processing MODIS data for three spring seasons (2012 2014)
- Overall results:
 - Stable processing following bug fixing after first large-scale tests
 - Thematic contents generally confirmed when comparing with synoptic data
 - More detailed validation ongoing

Parameter	Description
Thematic variable	Surface Temperature of Snow
Spatial coverage	Local (demonstrated for South Norway)
Delivery time period	Snowmelt season (March-June)
Temporal frequency	Daily
Spatial resolution	$0.01^{\circ} \times 0.01^{\circ}$
Sensor	MODIS
Service start	1 March
Service status	Pre-operational (at least 2015)
Service provider	NR (KSAT)

STS for South Norway on 11 March 2013

Principle

- Based on Key's algorithm (split window + view angle correction)
- The retrieval algorithm requires that the emissivity of the surface is known. Therefore, we restrict the use to snow-covered surfaces
- Atmospheric correction: Done by measuring the atmospheric effect at two wavelengths and then correcting according to atmospheric path length
- At 0°C we found an accuracy of about 0.5°C in our test site
- Can be applied on NOAA AVHRR, Terra/Aqua MODIS, ENVISAT AATSR and Sentinel-3 SLSTR

CryoLand

I Legend

Layers

About

2014-03-24

2014-03-27

La Download

Help

daily_FSC_PanEuropean_Optical

daily_SCAW_Scandinavia_Radar

daily_FSC_Alps_Optical

daily_LIE_Baltic_Optical

RIE_SE_FI_Torne_River_2013_Radar

View_10day_FSC_PanEuropean_Cloudfree

View_10day_LIE_Baltic_Cloudfree

multitemp_FSC_Scandinavia_Optical_Radar

daily_STS_SouthNorway_Optical

Surface Temperature of Snow (STS) in degree C 0 to -4.9 deg. C -5 to -9.9 deg. C -10 to -14.9 deg. C -15 to -19.3 deg. C -20 to -29.9 deg. C -30 to -39.9 deg. C -40 to -50.0 deg. C Fractional Snow Cover, no STS

daily_SSW_SouthNorway_Optical

daily_FSC_PanEuropean_Optical_Uncertainty

avg_10day_SSPI_PanEuropean_Microwave

avg_30day_SSPI_PanEuropean_Microwave

2014-03-15

2014-03-18

2014-03-21

2014-03-2014-03-31 2014-04-03

ы

6.37048, 58.103

Pre-operational snow surface wetness

- Thematic information:
 - Snow wetness categories for fully snowcovered surfaces
- Testing/verification done:
 - Tested by processing MODIS data for three spring seasons (2012 2014)
- Overall results:
 - Stable processing following bug fixing after first large-scale tests
 - Thematic contents generally confirmed when comparing with synoptic data
 - More detailed validation ongoing

Parameter	Description
Thematic variable	Snow Surface Wetness
Spatial coverage	Local (demonstrated for South Norway)
Delivery time period	Snowmelt season (March-June)
Temporal frequency	Daily
Spatial resolution	0.01° × 0.01°
Sensor	MODIS
Service start	1 March
Service status	Pre-operational (at least 2015)
Service provider	NR (KSAT)

First evidence of snowmelt start in South Norway as seen in the SSW product on 13 April 2013

Principle

- Infer wet snow from a combination of measurements STS and SGS in a time series of observations
- Temperature gives a good indication of where wet snow may be present
- Rapid increase in the effective grain size simultaneously is a strong indication of a wet snow surface
- A temporal algorithm combining SGS and STS is applied to infer categorical SSW
- Can be applied on NOAA AVHRR, Terra/Aqua MODIS, ENVISAT AATSR and Sentinel-3 SLSTR

Statkraft Nore 1 catchment 8 April 2013

0

 CryoLand
 Image: Ima

Snow covered area (dry and wet snow)
 Dry, cold Snow
 Dry-to-moist Snow, stable conditions
 Dry-to-moist Snow, increasing Grain Size
 Moist Snow, stable conditions
 Moist Snow, increasing Grain Size
 Wet Snow
 Fractional Snow Cover, no SSW estimate

H

2014-03-15

2014-03-18

2014-03-21

2014-03-24

2014-03-27

Operational fractional snow cover

- Fractional Snow Cover (FSC)
- Multi-sensor / multi-temporal Radarsat-2 & MODIS
- Manual inspection indicate overall good results
- Testing/verification for 2012/13
- Runs operationally at KSAT

Parameter	Description
Thematic variable	Fractional Snow Cover (FSC)
Spatial coverage	Scandinavia
Delivery time period	15 March – 1 August
Temporal frequency	Daily
Spatial resolution	0.0025° × 0.0025°
Sensor	Terra MODIS, Radarsat-2
Service start	15 March
Service status	Operational (at least 2015)
Service provider	KSAT

Regional fractional snow cover map from MODIS and Radarsat-2 of 16 May 2013

Multi-sensor multi-temporal principle

- Let each pixel in each optical and SAR image have a confidence value (based on sensor models)
- Let the confidence of a product decrease with time (e.g. linearly)
- Compute the most likely FSC for each pixel based on the above

$$\begin{split} \mathsf{MFSC}_t(x,y) &= \mathsf{UFSC}_i(x,y) \text{ for } i \text{ which gives} \\ & \mathsf{max}(\mathsf{conf}_{\mathsf{MFSC}}(\mathsf{UFSC}_i(x,y)) \quad i = t,...,t\text{-n} \end{split}$$

Optical fractional snow cover principle

- Two-class linear spectral mixing model applying the visible part of the spectrum
- Regional training targets
- Implicit regional atmospheric and snow metamorphosis correction
- Cloud detection using a regionally optimised k-NN classifier
- Topographic correction
- Non-forested areas (for FSC)
- Tested on AVHRR, MODIS, MERIS and AATSR
- Accuracy: 5-20% FSC error
- Can be applied on NOAA AVHRR, Terra/Aqua MODIS, ENVISAT MERIS/AATSR and Sentinel-3 OLCI/SLSTR

Improvement using SAR

SCAW

MODIS + SCAW SCF, 65% clouds.

- Cloud cover can be significantly reduced when taking SAR into account
- Works best in the spring/ summer when there is a lot of wet snow in the mountains
- Can also have an impact early in the season and for the first snow fall in the autumn
- Limited capabilities during the polar darkness period since MODIS data is lacking

Modis SCF, 85% clouds.

May 30th 2012

Change indicator

Operational snow covered area wet

- Radarsat-2 algorithm implemented at KSAT
- Testing in 2012, validation versus high-resolution optical data from 2013
- Ran automatically since January 2013
- Processing ready for Sentinel-1 launch, first snow map late 2014/early 2015

Parameter	Description
Thematic variable	Snow covered area wet (SCAW)
Spatial coverage	Scandinavia
Delivery time period	All year
Temporal frequency	Daily
Spatial resolution	0.0005° × 0.0005°
Sensor	Radarsat-2
Service start	January 2013
Service status	Operational
Service provider	KSAT

SCAW from Radarsat-2 over Scandinavia at 4 June 2013

Early snowfall Sept 2014

27.09.2014

Radar shadow / layover / foreshortening
Dry Snow or Bare Ground, no Wet Snow mapping
Wet Snow

First Sentinel1A images -SCAW products not available yet

S1 IW 2014.09.20 16:16

MODIS 2014.09.23 12:00 (interpolated temporaly)

S1 IW 2014.09.20 16:16 (R,G,B)=(VV,VH,VV)

LS-8 2014.09.23 12:00

Sentinel-1A vs Landsat-8

